
CONTENTS                                                       
 

Page
Chapter 1 Getting started 1
Chapter 2 The editor 6
Chapter 3 The 68000 assembler 14

APPENDICES

A. 68000 instruction set summary
B. Editor/assembler quick reference guide

Index



1  GETTING STARTED

At the heart of the Sinclair QL there is a member of the Motorola
68000 family of processors: the Motorola 68008. From a software point
of  view  the  68008  is  a  full  68000  implementation.  Its  major
difference is that the device package is smaller, and only caters for
an 8-bit data bus. An effect of this is that the actual throughput of
the processor is reduced, due to overheads in memory addressing. This
particular  detail  should  not  deter  the  QL  assembly  language
programmer, who still has at his disposal one of the most powerful
state-of-the-art 16/32-bit processors currently available. Also, the
68008 only has 20 of its
maximum 32 address lines brought out to its package pins. This means
that the addressing range is limited to 1 Megabyte (if you can call 1
Megabyte a 'limitation'!).

This  manual  describes  a  fast,  powerful  editor/assembler  package
developed specifically for the Sinclair QL. The full screen editor
and the 68000 assembler will be discussed only. Detailed descriptions
of the 68000 chip and its instructions are not given. For a full
treatise of these, as well as the Sinclair QL QDOS multi-tasking
environment, refer to the bibliography at the end of this chapter.

1.1 Making a working copy of the Microdrive cartridge

Before  doing  assembly  language  work,  make  a  working  copy  of  the
Microdrive cartridge. To do this place a blank cartridge in MDV1 and
the master cartridge in MDV2. Enter the command:

LRUN MDV2_CLONE

This will format the new cartridge, and then copy all the programs
from the master onto it. Finally, a directory listing will be given
of your new copy. Remove the master cartridge from MDV2 and reset the
QL.  The  editor/assembler  package  will  initialize  itself  and  a
copyright front page will be displayed. At this point the package is
ready and waiting for use.

1



1.2 The program cycle

If  you  are  familiar  with  68000  programming  and  the  Sinclair  QL
system, you may wish to skip the rest of this chapter and simply go
on to see how the editor and the assembler are used. For many people,
however, it is useful to see an example. This is what we shall do
here.

EDITING A PROGRAM

Figure 1.1 shows the source listing of a very simple executable type
program (i.e., a program that may be executed through SuperBASIC's
EXEC command). Assuming a working copy of the editor/assembler has
been made and that the copyright front page is staring at you in the
face, the first thing we need to do is edit the source program on to
the Microdrive. Start the editor by using the command:

LRUN MDV1_EDITOR

Once  the editor  has loaded  and started,  you will  see a  flashing
cursor in the top left-hand corner of the display window. Enter the
source program shown in Fig.1.1 by simply typing it in. You may use
the TABULATE key to space the text out as shown. At the end of each
line press ENTER to go on to the next line. Each line may be edited,
if you make a mistake, by using the normal SuperBASIC CTRL-arrow
keys. If you get really stuck at any stage, refer to Chapter 2.

Having entered the text fully, save the editor text away on to the
Microdrive by using the editor CTRL-S command. When the editor asks
for the file name, enter:

MDV1_PROG

The editor will save the text away in the file 'MDV1_PROG_ASM'. The
"save' command does not empty the editor buffer and so the editor
will  be  seen  to  continue.  Leave  the  editor  by  using  the  CTRL_F
command. If you perform a DIR of the Microdrive at this point you
will see your text
file.

ASSEMBLING THE PROGRAM

Now that the program source is on the Microdrive we can assemble it
using the assembler. Enter the command:

EXEC_W MDV1_ASM_EXEC

The assembler will require the answer to three questions, relating to
the  source  file,  possible  object  code  file,  and  possible  listing
file.

2



*H Job to write a message
;
; Copyright (c) 1984 McGraw-Hill (UK)
;

ORG 0
;
MYSELF EQU -1
MT_FRJOB EQU $05
SD_SETSZ EQU $2D
UT_SCR EQU $C8
UT_MTEXT EQU $D0
;
; Header for debuggers etc.
;

BRA.S MESSAGE ;branch to code
DEFL 0
DEFW $4AFB ;standard header
DEFW 7
DEFB ‘Message’
ALIGN

MESSAGE: LEA SCR(PC),A1 ;set up a screen
MOVE.W UT_SCR,A4
JSR (A4)
BNE.S SUICIDE ;check error return
MOVEQ #SD_SETSZ,DO ;set character size
MOVEQ #3,D1 ;wide
MOVEQ #1,D2 ;tall
MOVEQ #-1,D3 ;no timeout
TRAP #3
LEA HALLO(PC),A1 ;write a message
MOVE.W UT_MTEXT,A4
JSR (A4)

SUICIDE: MOVE.L D0,D3 ;notify any error
MOVEQ #MT_FRJOB,D0 ;force remove
MOVEQ #MYSELF,D1 ;myself
TRAP #1

SCR: DEFB $FF,$04 ;chkbrd/4-pix. border
DEFB $04,$00 ;green paper, black text
DEFW 200,35 ;200x35 pixel window
DEFW 156,100 ;in the middle

HALLO: DEFW 5
DEFB "Hallo"

;
END

Figure 1.1 Simple message writing routine

3



Enter replies to these questions so as to get the following screen
display:

Source dev_file  (ASM ) ... mdv1_prog
Object dev_file  (CODE) ... mdv1_prog
Listing dev_file (    ) ...

This will assemble the file 'PROG_ASM' on 'MDV1_', and produce the
binary object file 'PROG_CODE' on 'MDV1_'. If the source text was
edited correctly you will get no error messages and the reports:

pass 1
pass 2
Error(s) detected: 0000
Symbol bytes free: 3F4C
Program bytes: OOO4E
Assembler finished

will be displayed. If you perform a DIR at this stage you will see
that there are now two of your files on the Microdrive.

CREATING AND RUNNING THE EXECUTABLE FILE

Your 68000 program is to run as an executable file (i.e., a job), and
it  will  be  necessary,  therefore,  to  load  the  pure  binary  file
('PROG_CODE')  into  memory  and  then  re-save  it  using  the  SEXEC
statement.  The  following  SuperBASIC  statements  will  create  an
executable copy on a Microdrive:

100 base=RESPR(128)
110 LBYTES mdv1_prog_code,base
120 SEXEC mdvl_prog exec,base,78,128

The program could thereafter be executed as a job merely by using the
SuperBASIC command:

EXEC mdv1_prog_exec

Note that the extension ' _EXEC' is not compulsory for executable
files, it merely helps you to identify easily those programs that are
of an 'executable' nature.

4



Bibliography

MOTOROLA: 'MC68000 16-Bit Microprocessor User's Manual', MOTOROLA
INC., Fourth Edition.

Kane,G., Hawkins,D., and Leventhal,L.: ‘68000 Assembly Language
Programming’, Osborne/McGraw-Hill, 1981.

Opie,C.: 'QL Assembly Language Programming’, McGraw-Hill(UK), 1984.

5



2 THE EDITOR

The full screen editor is simple to operate and yet powerful enough
to enable assembler source code to be quickly and efficiently edited.
In practice it is important to use this editor and not, for example,
the  word  processor  package  'Quill',  because  the  latter  does  not
produce pure ASCII text files on the Microdrives (easily). Pure text
files are the only type of file that the complementary assembler can
parse.

The  editor  is  designed  specifically  for  the  creation  of  source
(textual) programs. It allows up to 400 lines to be edited at any one
time, with 72 characters per line. This is more than adequate for two
major reasons. First, the size of program developed, at least in the
early stages, is not likely to exceed this length, and second, the
assembler will permit the inclusion of external 'library' files. If a
large program is to be developed it is a simple case of creating one
central  program  that  will  include  as  many  external  source  file
modules as it takes to produce the entire code.

To invoke the editor, place the Microdrive with the working copy of
the assembler package (see Chapter 1) into drive 1, and reset the QL.
After the normal copyright front page has been displayed, enter:

LRUN MDV1_EDITOR

The editor will be automatically run after being loaded. Note that if
the assembler had been used immediately prior to the editor, there
would
be no need to reset the QL before entering the above command.

2.1 Editor windows

On entry, the editor screen will appear as shown in Fig.2.1. Four
windows exist in the display. Going from the top of the screen to the
bottom the function of the windows is as follows.

At the very top there is a ‘status' window. The contents of this
window will show, in a continuous manner, the cursor line position,’
the total number of lines used, and the line position of a special
marker that can be employed during an edit session.

Below  the  status  window  there  is  a  ‘tabulation  ruler'.  This
particular window will never change. The tabulation ruler shows that
nine tab-stops are available and that these exist at every eighth
column  position along  a line.  Each time  the TABULATE  key on  the
keyboard is pressed, the text cursor will move across to the next
tab-stop.  These  tabulation  positions  are  important  in  that  the
assembler, described in the next chapter, will

6



tabulate its list-file in an identical way.

The third window in the display is the actual 'text window'. This is
truly a window! It is a window with a view into your text. At any one
time you can look at up to 17 lines of your program. The flashing
cursor  within  the  window  enables  you  to  edit  your  text  program
easily. When the editor is initially entered the text cursor will be
in the top left-hand corner of the text window, corresponding to
column 1, line 0.

Figure 2.1 Editor screen layout

The last window, at the very bottom of the screen, is used as a
message and prompt window. There will be a number of occasions when
the contents of this window change. For example, when you request
help, the "help' message will appear in this bottom window.

2.2 Editor modes

When the editor is initially entered it will be in its command/edit
mode. In this mode there are two major operations available. First,
one of six top-level commands (listed in the bottom message window)
may be executed. They are all control commands and are therefore
entered by typing the appropriate control character (to do this hold
the  CTRL  key  down  while  typing  the  desired  command  character).
Second, text may be entered and edited simply by typing the required
characters, cursor control commands, and text deletion commands.

At first sight it may seem that there are a lot of options to learn.
In practice, however, the editor is very simple to use and you can
obtain a useful 'help' message, which lists all the cursor control
and text deletion commands, should you need it!

7



2.3 Getting help

The editor has three basic groups of commands and a facility exists
to enable you to view a list of the commands in each group, together
with their function. The three groups are:

1. Top-level commands (e.g., load-file)
2. Cursor control commands (e.g., cursor-down-a-line)
3. Text deletion commands (e.g., delete-character-left)

The message window at the bottom of the screen normally displays the
six top-level commands. One of these commands is the ‘help’ command,
entered by typing “H (short for CTRL-H). This will produce a 'help'
message in the bottom window showing the 12 cursor control commands,
and the four text deletion commands that are available.

Typing a second *H will cause the original message display to be
regained. In this way, one control command is used to toggle between
two command group lists. Note that this means the editor is totally
self-documenting in terms of its command availability.

2.4 Entering text

Text is entered simply by typing in the characters required. On any
one line a maximum of 72 characters may be entered. To move on to the
next line press the ENTER key, and then continue as before. At any
time, except at the very end of a line, the TABULATE key can be
pressed, and the cursor will move to the next available tab-stop on
the current line.

The real power of the editor is, of course, in the ability to change
text, either because it is wrong or because you wish to delete some
lines or add extra lines. To do this we need to be able to move the
cursor to the appropriate place in the text, and then delete or enter
text accordingly.

2.5 Moving the cursor

A total of 12 ‘immediate’ cursor control commands exist. They are
entered by using one of the four cursor control keys (up, down, left,
or right) in one of three ways:

1. NORMAL - the keys are used on their own.
2. SHIFT - the keys are entered as 'shift' keys (i.e., the SHIFT key

is held  down while the cursor control key is pressed).
3. ALTMODE - the keys are entered as 'altmode' keys (i.e., the ALT

key is held down while the cursor control key is pressed).

The cursor may be moved left or right along a line in a variety of
ways. The cursor may also be moved up and down the text. You will
notice if you type in more than eight lines that the cursor will stay
in the middle of the text window and the text will scroll around it.
If, at 

8



some later stage, you position the cursor within the first eight
lines you will again notice that the cursor moves up and down and the
text stays still. This cursor operation is purpose designed to enable
you to see the current cursor line in its true context. This in turn
makes  editing the  text much  easier. The  function of  each of  the
cursor control commands is as follows:

 1. UP - The cursor will move up one line. If the cursor is
at the beginning of the text no action will be
taken. If the line moved to is shorter than the
current line, the cursor will be positioned at the
end of the new line.

 2. DOWN - The cursor will move down one line. If the cursor
is at the end of the text no action will be taken.
If the line moved to is shorter than the current
line, the cursor will be positioned at the end of
the new line.

 3. LEFT - The cursor will move one character to the left. If
the cursor is at the beginning of a line no action
will be taken.

 4. RIGHT - The cursor will move one character to the right.
If the cursor is at the end of a line no action
will be taken.

 5. SHIFT-UP - The cursor will move up one page, equivalent to 16
lines. Notice that, as the text window is 17 lines
deep, there will always be an overlap of one line.
This feature will help you to scan the text more
easily. The cursor will always be positioned at
the beginning of the new line.

 6. SHIFT-DOWN - -The cursor will move down one page, “equivalent
to 16 lines. Notice that, as the text window is 17
lines deep, there will always be an overlap of one
line. This feature will help you to scan the text
more easily. The cursor will always be positioned
at the beginning of the new line. 

 7. SHIFT-LEFT - The cursor will move one word to the left. If the
cursor is at the beginning of a line no action
will be taken.

 8. SHIFT-RIGHT - The cursor will move one word to the right. If the
cursor is at the end of a line no action will be
taken.

 9. ALTMODE-UP - The cursor will move to the beginning of the text.
10. ALTMODE-DOWN - The cursor will move to the end of the text.
11. ALTMODE-LEFT - The  cursor  will  move  to  the  beginning  of  the

current line.
12. ALTMODE-RIGHT - The cursor will move to the end of the current

line.

If the cursor is moved to a position within a line, and then text
entered in the usual way, the characters will be inserted immediately
prior to the character under the cursor. The rest of the line will be
seen to pan to the right.

9



2.6 Deleting text

Only four immediate text deletion commands exist, and these in turn
only provide three functions (because two of the commands perform the
same  task).  The  commands  are  entered  by  using  the  normal  cursor
control keys (up, down, left, and right) together with the CTRL key.
The function of the commands are as follows:

1. CTRL-UP - The current  cursor line  will be  deleted. The
command will not be executed if a marker line
exists.

2. CTRL-DOWN - (Same as CTRL-UP).
3. CTRL-LEFT - The character  immediately to  the left  of the

cursor will be deleted. The rest of the line
will pan to the left. No action will be taken
if the cursor is at the beginning of a line. If
the character to be deleted is a space (single
or as part of a tabulation) then spaces will
continue to be deleted until the entire gap to
the left of the cursor is erased.

4, CTRL-RIGHT - The character under the cursor will be deleted.
The rest of the line will pan to the left. No
action will be taken if the cursor is at the end
of a line. If the character to be deleted is a
space (single or as part of a tabulation) then
spaces will  continue to  be deleted  until the
entire gap to the right of the cursor is erased.

The  above commands  enable local  text to  be deleted.  It is  often
useful to delete whole blocks of program text, and this can be done
by using one of the editor ‘execute’ command options.

2.7 The ENTER key

When you have entered a _ reasonable number of program lines into the
editor and moved the cursor around the text, you will undoubtedly
notice that the ENTER key performs different functions at different
times. Its functions may be defined as follows.

If the cursor is at the very end of the text then the ENTER key will
move the cursor to the beginning of a newly created line, directly
after the previous line. This makes the initial entry of text, and
the appending of text, very simple. If the cursor is at the beginning
of a line, but that line is not the last line of the text, then the
ENTER key will create a new blank line at that point and move the
rest of the text down. This enables new lines to be inserted within
some current text very easily. If the cursor is within a line then
the ENTER key will simply move the cursor down to the beginning of
the next line.

10



2.8 Editor ‘execute’ command options

These commands are entered initially by using the top-level command
^E (CTRL-E). Four commands are available and they will be listed in
the bottom message display window when the “E command is given. To
execute  any  one  of  the  options  simply  press  the  character  key
corresponding to the first letter of the option. For example, to
execute  the  ‘find  string'  option  you  would  simply  enter  F.  The
operation of the commands is as follows.

FIND STRING COMMAND

A prompt will be given in the bottom window asking for the textual
string to search for. Simply type in your search string and press the
ENTER key. The editor will search for the string, beginning at the
start of the current cursor line. If the string is found then the
cursor will be moved to the beginning of the string, and the text
window updated accordingly.

If the search string is not within the text searched, the cursor will
remain in its previous position. Note that the case of the text is
not relevant. For example, 'This' is exactly the same as 'this', as
far as the editor search option is concerned.

It may be that the editor search option places the cursor at a match,
which is not the particular one you were looking for. If this is so
then remember to move the cursor down to the beginning of the next
line, or the search option will simply find the same one again.

DELETE BLOCK COMMAND

This is the one command that requires the use of the special marker,
so let us look at this first. A marker symbol (shown as a right-sided
comilla - double angled bracket character) can be entered, by using
the ^M (CTRL-M) top-level command, to mark any particular line in the
text. The marker will always be entered and shown at the beginning of
the current line, regardless of the current cursor position, and the
cursor moved to the first character in the line. It is not possible
to mark a line that is completely full, and neither is it possible to
mark more than one line.

Assuming a marked line is available, the 'delete-block' command will
delete all lines between the marked line and the current cursor line
inclusive. : The command will issue an error message if no marker is
present (type any character to continue after the error message is
printed).

11



MOVE TO LINE COMMAND

This command lets you move to an absolute line within the text. A
prompt will be given requesting the number of the line to which you
wish to move. Enter the appropriate number and press the ENTER key.
The cursor will be moved to the beginning of the corresponding line
and the text window updated.

If a line number less than zero is entered, the cursor will be moved
to the beginning of the text. Conversely, if a line number greater
than the total number of lines available is entered, the cursor will
be moved to the end of the text.

INCLUDE FILE COMMAND

When editing program text it is very useful to be able to merge in
other  bits  of  program  text  from  another  file.  This  command  will
enable a text file (produced by this editor) to be included in the
current source text at the current cursor position. A prompt will be
given for the device and file name of the external file, which must
be on a Microdrive. Simply enter the appropriate information and the
file will be included in the current text. While the text inclusion
is taking place a_ series of '+' markers will be displayed in the
bottom window to act as an indicator. Without such an indicator the
editor could appear to lock up, whereas in fact it is simply doing
some internal shuffling.

Care must be taken over this operation. If the requested file does
not exist, the editor will report a fatal error and cease running!
You are advised to save a copy of your current text on a Microdrive
before  executing  this  command.  The  command  will  issue  an  error
message if a marker line is present (type any character to continue
after the error message is printed). An error message will also be
given if the editor runs out of storage in the process of trying to
merge in the external file.

When specifying the device and file name of the external file, the
extension may or may not be given. If it is left off, the default
extension '_ASM' will be used.

2.9 Loading a text file

A new source file can be loaded into the editor from a Microdrive by
using the ^L (CTRL-L) top-level command. The file must have been
created previously using the editor. Any current text will be erased
from the memory of the editor and the cursor will be returned to the
beginning of the new text.

When specifying the device and file name of the file, the extension
may or may not be given. If it is left off, the default extension
‘ASM’ will be used.

12



2.10 Saving the current text

The  current  contents  of  the  editor  buffer  can  be  saved  on  to  a
Microdrive by using the “S (CTRL-S) top-level command. The contents
of the editor will not be erased and therefore the 'save' command can
be used any number of times during an editing session for safety
backup purposes.

When specifying the device and file name of the file, the extension
may or may not be given. If it is left off, the default extension
‘ASM’ will be used. It is not possible to save text that has a marker
line in it, and under such a condition an error message will be
issued (type any character to continue after the error message is
printed).

2.11 Leaving the editor

To leave the editor use the top-level command “F (CTRL-F). You will
be asked if you are sure about the option! If you press 'Y', the
editor  will  delete  itself  and  your  text  will  be  lost.  It  is
important, therefore, to make sure you have saved (*S command) the
current text before finally leaving the editor. Pressing any other
key will return you to the editor with the text left intact.

 

RESTARTING THE EDITOR

If,  for  any  reason,  you  are  returned  to
BASIC while

using the EDITOR, press:

CTRL C

then type,

GOTO 1050 and press RETURN

 

 

 

13



3 THE 68000
ASSEMBLER

The 68000 assembler described here is a full implementation, written
in  machine  code  for  the  fast  assembly  of  68000  programs.  It  is
purpose  designed  for  use  with  the  QL  device  drivers  and  will
therefore work with any peripheral device attached to the QL (e.g.,
Microdrives, floppy disks, hard disks, serial and parallel printer
interfaces, and so on).

Its specification includes:

1. full 2-pass assembly
2. output streaming to screen, printer or mass storage medium
3. pseudo-operations (e.g., ORG, COND)
4. assembler directives (e.g., *HEADING)
5. simple expression parsing
6. long label names and local labels
7. alternative mnemonics, and
8. external library file inclusion.

Note that this chapter describes the facilities available within the
assembler only. It does not attempt to discuss 68000 instructions.

Figure 3.1 Assembly code development cycle using Microdrives

14



3.1 Assembler operation

The assembler lies at the heart of the assembly language system. It
takes its input from a Microdrive file (or some other suitable mass
storage medium), and can direct its output either to the screen, a
printer, or the mass storage medium. For the purposes of this manual
it  will  be  assumed  that  Microdrives  are  being  used  as  the  mass
storage medium. Figure 3.1 illustrates the development cycle. The
editor is used first in order to create the source program. This
source is then fed to the assembler which creates its various output
files.  These  output  files,  and  in  particular  the  object  (binary)
file, can then be manipulated in a number of ways. For example, the
binary file may be left as it is and accessed by SuperBASIC's LBYTES
command. Alternatively its contents could be loaded into memory and
then  re-saved  in  the  form  of  an  executable  file  for  use  with
SuperBASIC's EXEC command.

INVOKING THE ASSEMBLER

To invoke the assembler, place the Microdrive with the working copy
of the assembler package (see Chapter 1) into drive 1, and reset the
QL. After the normal copyright front page has been displayed, enter: 

EXEC_W MDV1_ASM_EXEC

The assembler will be loaded and executed. Note that if the editor
had been used immediately prior to the assembler, there would be no
need to reset the QL before entering the above command. The ‘_W’ form
of the EXEC command must be used in order to suspend SuperBASIC until
the assembler has finished.

ASSEMBLER FILE CHANNEL DEFINITIONS

Once the assembler has been invoked it will ask in turn for three
file
channel definitions:

1. Source dev_file (ASM) ...
Enter the device and the file name for the source text of your
68000  program.  DO  NOT  enter  the  extension  '  ASM'  as  the
assembler will do this for you (your source program must have
an '_ASM' extension as part of its file name). Any device
which supports a directory (e.g., Microdrives, floppy disks)
may be specified.
If you simply press ENTER at this stage, without any preceding
characters, the assembler will supply you with a short 'help'
message and abort.

2. Object dev_ file (CODE) ...
Enter the device and the file name for the binary object code
of your 68000 program. DO NOT enter the extension '_CODE' as
the assembler will do this for you (an object file will always
have a ‘_CODE' 

15



extension as part of its file name). Any device that supports
a  directory  (e.g.,  Microdrives,  floppy  disks)  may  be
specified. 

If you simply press EN’ at this stage, without any preceding
characters, the assembler will suppress (i.e., not create) any
binary object output.

3. Listing dev_file ( ) ...
Enter the device and, if the device requires one, the file
name for the assembler listing file. Any extension desired
should  also  be  given  when  appropriate.  The  assembler  will
neither  put  nor  assume  any  extension  for  the  listing  file
name. Any suitable output device may be specified.
 
To send the list file to the assembler's own window you may
specify
the  list  device  as  either  'CON_'  or  'SCR_'.  All  four
characters must
be entered. It is not possible to use (i.e., specify) any
other
window.

If you simply press ENTER at this stage, without any preceding
characters, the assembler will suppress (i.e., not create) the
assembler listing file.

EXAMPLES

To see the effect of entering various file channel definitions let us
consider some examples.

1. Source dev_file (ASM ) ... mdv2_message
Object dev_file (CODE) .
Listing dev_file ( ) pas

This  will  assemble  the  file  'MESSAGE_ASM'  on  'MDV2_',  but
produce no output (other than error messages). This form is
therefore useful for performing a quick check on a program to
see if it is syntactically correct.

2. Source dev_file (ASM ) ... mdv2_message
Object dev_file (CODE) ... mdv2_message
Listing dev_file ( ) ...

This  will  assemble  the  file  'MESSAGE_ASM'  on  'MDV2_',  and
produce  the  binary  object  file  'MESSAGE_CODE'  on  the  same
drive. This form will probably be the most widely used one
during program creation and testing.

16



3. Source .dev_file (ASM ) ... mdv2_message
Object dev_file (CODE) ...
Listing dev file ( ) ... ser2c

This will assemble the file 'MESSAGE_ASM' on 'MDV2_', and send
the listing file (during pass 2) out to a printer or some
other  suitable  device  attached  to  'SER2'.  The  'C'  postfix
merely changes line_feeds to carriage_returns and may not be
used for some devices (see QL User Guide). This mode is useful
for obtaining hard copy of an assembled program,

4. Source dev_file (ASM ) ... mdv2_message
Object dev_file (CODE) ... mdv2_message
Listing dev_file ( ) ... con_

This will assemble the file 'MESSAGE_ASM' on 'MDV2_', produce
the binary object file 'MESSAGE_CODE' on 'MDV1"', and send the
listing file (during pass 2) to the assemblers default window.

ASSEMBLER REPORTS

At  the  end  of  a  complete  assembly  operation  the  following  four
messages will be given:

Error(s) detected: 0000
Symbol bytes free: 3F4C
Program bytes: O004E
Assembler finished

though, of course, the actual values displayed will vary. The number
of errors detected are displayed as a denary number. The remaining
two numerical reports give the value in hex.

PURE BINARY FILES

The assembler always produces a pure binary object file with the
extension '_CODE'. If your program is, for example, an extension to
SuperBASIC,  or  a  short  patch  to  be  called  via  SuperBASIC's  CALL
command, this type of binary file is all that you will need.

At the end of assembly the assembler will tell you how long (hex
notation) your program was. If you add to this the amount of run-time
stack/data space the code will need, you will know how much RAM to
reserve for the program using SuperBASIC's RESPR function.

Let us take, for example, the final reports shown above. The program
has a length of:

4E (hex) bytes = 78 bytes.

17



Suppose, on viewing the system calls used etc., that a stack/data
workspace of about 100 bytes would be suitable. This means that we
must allocate at least '78+100 = 178' bytes for the program. If the
SuperBASIC statements:

100 base=RESPR(256)
110 LBYTES mdv2_prog_code,base

were used (assuming the program was called 'PROG' and that it was on
"MDV2_'), more than enough space will be allocated. It is certainly
better to be safe than sorry!

EXECUTABLE FILES

If your 68000 program is to run as an executable file (i.e., a job),
it will be necessary to load the pure binary file ('_CODE') into
memory and then re-save it using the SEXEC statement.

If we take our previous example once again, assuming all the values
to be the same, the following SuperBASIC statements will create an
executable copy on a Microdrive:

100 base=RESPR(128)
110 LBYTES mdv2_prog_code, base
120 SEXEC mdv2_prog_ exec, base, 78,100

The program could thereafter be executed as a job merely by using the
SuperBASIC command:

EXEC mdv2_prog_exec or
EXEC_W mdv2_prog_ exec

Note  that  the  extension  '_EXEC'  is  not  compulsory  for  executable
files, it merely helps you to identify easily those programs which
are
of an ‘executable’ nature.

3.2 Assembler line syntax

The source input lines for the assembler are single statement lines.

Given  here  is  the  general  syntax  of  these  lines,  more  detailed
explanations being given later under the appropriate headings.

Assembler source input consists of a series of text lines of maximum
length 80 characters, created by the editor described in the previous
chapter. Each line is of the form:

LABEL: OPERATOR ARGUMENT ;COMMENT

Any of the four parts - label, operator, argument, or comment - may
be omitted where this is appropriate (clearly a blank line would
contain none of these, and a pure comment line would contain just the
fourth

18



element). Items are separated by one or more blanks (spaces or tab
characters), the colon following a label, or the semi-colon preceding
the comment.

LABELS

Each label name must start with a letter but thereafter may contain
any combination of characters, underscores, or digits. No account is
taken of case, everything of importance being converted into upper-
case internally. Additionally a temporary label may be given (see
Sec.3.4).

OPERATORS AND ARGUMENTS

Operators can be 68000 mnemonics (e.g., ADDX, ROR), assembler pseudo-
operators  (e.g.,  DEFB,  COND),  or  an  assembler  directive  (e.g.,
*INCLUDE). The format of the argument parameter will depend upon the
operator that precedes it.

COMMENTS

Any line may have a comment appended to aid source documentation. A
comment must be preceded by a semi-colon (;). Anything after this
comment delimiter will be ignored by the assembler.

THE ‘END’ PSEUDO-OPERATOR

Assembler  source  text  can  optionally  be  terminated  with  the  END
assembler pseudo-operator. If it is not used then the natural end-of-
file will be taken as the end of the source text.

3.3. Symbols

Symbols,  acting  as  constants  for  the  duration  of  the  assembly
operation,
can  be  defined  either  from  within  the  source,  or  dynamically  as
boolean
(true/false) constants at assembly time. .

DEFINITION FROM SOURCE (EQU)

Alphanumeric  symbols  may  be  defined  using  the  assembler  pseudo-
operator EQU (or simply an ‘=' sign):

For example: LETA EQU $41  ;'a'
LETB = LETA+1  ;'B'

The argument following the EQU can be any valid simple expression (as
defined  later).  If  an  attempt  is  made  to  redefine  a  symbol,  an
assembler

19



 'M' (Multiple definition) error will ensue - during pass 1 only. If
such  an  error  occurs  it  would  be  sensible  to  halt  assembly  by
pressing the ESC key as there may be many future errors, particularly
if temporary labels are also being used (which will normally be the
case). Upper and lower case are treated as being the same within
symbol definitions:

For example: LETC  EQU letb+1 ;'C'
letd  EQU letc+1 ;'D'
LETE  EQU LETD+1 ;'E'

Symbols  are  distinct  only  within  the  first  eight  alphanumeric
characters and they must start with an alpha character (A..Z, a..z).
If  the latter  rule is  violated an  'L' (Label  format) error  will
ensue.

For example: DELAYforTimer1 = 64
Timer2Delay    = DELAYfor sh1 2

DEFINITION AT ASSEMBLY TIME (QRY)

If a symbol is defined with the QRY pseudo-operator, the value may be
given as either zero (false) by entering N at the keyboard, or as
minus one (true) by entering Y. The prompt for the keyboard entry is
given  at  assembly  time  (during  pass  1),  as  defined  by  the  QRY
argument. For example:

FLIST QRY Full listing required

will prompt with ‘Full listing required?’ and expect either a Y or an
N  as  the  response.  The  keyboard  entry  is  immediate  (no  ENTER
required) and the assembler will echo either Y or N as appropriate.
Note that keying any letter other than Y will effect an N response.
This facility is extremely useful when conditional assembly is being
used as it allows the programmer to specify flag values at assembly
time, and therefore the source does not have to be edited.

3.4 Labels

There are two types of label which can be used. Alphanumeric labels
may  be  defined  which  will  have  a  scope  of  the  entire  program.
Temporary or local numeric labels may also be defined, which will
have a_ scope limited to the area between the two standard labels in
which they are defined.

STANDARD LABELS

A  normal  alphanumeric  label  is  a  special  kind  of  symbol.  It  is
declared by ending it with a colon (:), and it will be given the
value of the location counter for the current statement. The label
itself  must  obey  the  same  rules  as  for  symbols  (i.e.,  must  be
alphanumeric, must start

20



with  an  alpha  character,  and  be  significant  in  its  first  eight
characters).

TEMPORARY (LOCAL) LABELS

Temporary or local variables have a number of important attributes.
Each label takes up only one third of the symbol table space required
for  normal  symbols.  They  do  not  appear  in  the  symbol  table  and
therefore the table will refer only to important locations, and they
may be re-used within different scope blocks thereby greatly reducing
the possibility of multi-defined labels.

A local label is defined by the label form '1%' to '255%' and may
optionally be followed by a colon (:). A local label may only exist
after a normal label has been declared, and its scope of existence is
limited up to the next normal label:

nlab1: moveq #0,d0
  moveq #delay,d1

1%:   cmp.b 4d0,d1
beq.s 2%
addq.b #1,d0
bra 12

2%: rts
;
nlab2: bra 1% ;1% is undefined here
2%: nop
nlab3:

During pass two a 'U' (Undeclared symbol) error will ensue if a local
label does not exist within its defined scope.

3.5 Expressions

The  assembler  will  accept  any  non-prioritized  simple  expression
consisting of:

1. symbols
2. normal/local labels
3. denary/hexadecimal numbers
4. single character strings

(Up-arrow facility, see Sec.3.6, is neither
required nor permitted)

21



5. the operators:
+ Unary plus / Add
- Unary minus / Subtract
* Unsigned 16-bit Multiply
/ Unsigned 16-bit Divide
SHR Shift right ('n' places)
SHL Shift left ('n' places)
OR Logical OR
AND Logical AND
NOT One's complement

NUMBERS

Numeric values may be defined either in denary or in hexadecimal. If
hexadecimal is being used the number must be preceded by an ampersand
(&) or a dollar sign ($):

For example:   defb 12,45,&3A
  defw $E2,$3AB0

If the first digit following a $ or & hexadecimal delimiter is not a
valid hexadecimal digit then an 'N' (Number format), or 'S' (Syntax),
error will ensue.

SIMPLE EXPRESSIONS

A simple non-prioritized expression is defined in this case to mean
any
expression of the general form:

<+/-> <operand> (<operator> <operand>)

A  unary  minus  or  plus  may  precede  the  first  operand.  Further
operator-operand pairs may be used if desired. Expression evaluation
is strictly from left to right. The NOT operator is a special case in
that only one operand may exist, and this operand must be a symbol or
a normal label. An 'I' (Illegal expression) error will ensue if the
assembler cannot pass the expression in its context. In most cases
this  will also  be followed  by an  'S' (Syntax)  error. Some  valid
examples are:

true   =  -1
false  =  not true
days   =  5
;

 prog:  moveq #true and &FF,d0
 moveq  #name and 255,d2
 moveq  #name shr 8,d3
 moveq  #'A',d0
 moveq  #'z'+1,d0

;

22



 moveq  #''',d0 ;Up-arrow (see 3.6)
 moveq  #'^',d0 ;equivalents, ie:
 moveq  #'A'+$80,d0 ;short form is used.

;
 moveq  #name/256+1,d2
 moveq  #days*24,d3

;
1%:  defb   0 ;Data store

 move.w store,a0
;
store: defb 0,0
;
mask  = true shl 8 + 1
mask2  = mask or $2020

Expression values will take on an 8-bit, 16-bit, or 32-bit value
depending  upon  the  context  of  the  expression.  Assembler  'O'
(Overflow)  or ‘R!  (Range) errors  will ensue  if it  seems that  an
assignment is out of context (e.g., if a 16-bit value is being used
in an 8-bit context). Some assemblers will simply assign the least
significant bytes in such cases, which greatly increases the amount
of debugging time required when you find out that your program does
not work as you intended. For the purposes of conditional assembly,
the expression will be deemed true if the most significant bit of the
result is set (e.g., -1), or false if this bit is unset (e.g., 0).

3.6 Data definition

Data  may  be  defined  by  using  the  following  assembler  pseudo-
operators:

DEFB    -    Define byte / char (8-bit)
DEFW    -    Define word (16-bit)
DEFL    -    Define long-word (32-bit)

Alternatively data storage space may be allocated (as zeros) by using
the pseudo-operator:

DEFS    -    Define space (n bytes)

The four data pseudo-operators available enable any form of static
data storage to be defined, and may be used in the following ways.

DEFB

This pseudo-operator is used to define byte values and character

strings. A free integration of both types is permitted in any one
definition line:

23



defb 13,'This is a message',13,0
defb 'ABCDEF'
defb 0,1,2,3,4,5,6,7,8,9

Each element of the definition line is separated from the next by a
comma (,). If the first character of an element is a single quote, a
string of characters is assumed to exist up to, but not including,
the next single quote ('). In the context of string definitions the

following is also applicable:

1. an up-arrow followed by a single quote will assemble as a
single
quote: defb '^''

2. an up-arrow followed by an up-arrow will assemble as a single
up-arrow: defb '^^'

3. an up-arrow followed by any other character will force the
most significant bit of that character to be set: defb '^A'

These special cases may exist anywhere with a string definition:

defb 'A^BC'
defb '^'up^'' ;'up' (with quotes)
defb 'A^^2'

DEFW AND DEFL

These pseudo-operators force numeric definitions to occupy 16-bits
(in the case of DEFW) or 32-bits (in the case of DEFL) whether or not
the actual value could reside in an 8-bit location.

defw 34,$56
defl 900,$4B330,2

Strings  (as  defined  under  DEFB)  may  not  be  defined  using  these
pseudo-operators.  Each  element  in  the  definition  line  must  be
separated from the next by a comma (,).

DEFS

If an area of memory is to be allocated to some use, but the initial
values  within this  area do  not need  to be  specified (e.g.,  heap
storage space), this pseudo-operator may be used. The single argument
that must follow this operator will specify the number of bytes to
reserve. The assembler fills the space with zeros.

3.7 Origin setting

The memory address where the assembled code is to start is defined by
the ORG pseudo-operation:

24



ORG $2A000

More than one ORG statement may exist within a program although it is
illegal to define an origin which is lower in memory than the current
assembly address. Previously declared labels or symbols may be used
within an expression as an argument to ORG. For example, it would be
possible to force an ensuing piece of code to reside at a clean page
boundary:

current:

ORG current+256 and $FFFFFFOO
neode:

It  is  common  practice,  when  writing  executable  code  programs  and
extensions  to  SuperBASIC,  to  omit  the  ORG  statement  altogether.
Assembly will then be based at address zero.

WARNING: Labels and symbols used in ORG expressions  must be pre-
defined. If this is not the case, different origins will exist during
pass 1 and pass 2. In such cases the code will fail to assemble
properly. The gap between the end of any previous code and a new ORG
will be filled with zeros by the assembler.

3.8 Conditional assembly

Individual blocks of code may be conditionally assembled using the
COND, ELSE, and ENDC pseudo-operators. The operator COND expects an
expression as an argument. If the most significant bit of the result
is set, the value is deemed true and the following code will be
assembled.

Conditional assembly (or non-assembly) of code will continue up until
the next ELSE or ENDC operator. If an ELSE operator is found, the
condition  for  assembly  is  reversed,  and  the  appropriate  assembly
continued up until the next ENDC operator. The particular level of
conditional assembly is terminated on reaching the corresponding ENDC
operator,

Conditional  assembly  may  be  nested.  If  pass  1  is  completed,  but
nesting  levels  for  conditional  assembly  have  not  been  completely
matched, a fatal 'Assembler error’ will ensue and assembly will cease
(i.e., pass 2 will not be entered). A 'C' error will ensue if an ELSE
or  an  ENDC  operator  is  encounteted  before  a  corresponding  COND
operator. Examples of this nesting are as follows:

yes_please =-l1
no_thank_you = not yes please

1. cond yes please
subx d2,d0 ;assembled

else
subx 4d0,d2 ;not—assembled

endc

25



2. addx dl1,d2 3 ;level 0
cond no_thank_you
  addx d2,d3 ;level la
  cond true
    addx d3,d4 ;level 2a
  else
    subx d4,d3 ;level 2b
  endc
else ;level 1b
  subx d3,d2
endc
  nop ;Back to level 0

Note that the QRY form of defining symbol values as true or false
(described  in  Sec.3.3),  is  an  extremely  useful  mechanism  for
conditional assembly, for example, in cases where slightly different
code needs to be generated depending on whether or not the code is to
run in ROM. The actual source code need never be changed - it would
simply be a matter of entering the appropriate responses at assembly
time.

3.9 Directives

The assembler Supports a number of assembly directives, invoked by
using an asterisk (*) as the first non-blank character in a statement
line. The following are supported:

1. *Eject
2. *Heading <string>
3. *List    <on/off>
4. *Number  <on/off>
5. *Include <filespec>

All of these may be abbreviated to just their first character (for
example, *E is the same as *EJECT).

*EJECT AND *HEADING

*Eject causes a form-feed to occur in the list file, and the page
number to be increased by one. Any heading, which had previously been
defined, remains.

*Heading allows a heading message to be defined which will be used to
document page headings in the list file. A form-feed will also occur
automatically (as with *E). The maximum length of a heading is 35
characters, Headings longer than this will be truncated.

If one of these two directives is not given before a form-feed is due
on a list file (in order to skip over pages in perforated listing
paper),  then  the  assembler  will  force  a  page  throw  as  and  when
necessary (normally after 56 lines of assembly listing).

26



*LIST

*List is used to turn the listing on and off. If the word ON follows
the directive then the listing will be turned on. If the word OFF
follows the directive then the listing will be turned off. Note that
the directive *L ON will have no effect if the list-file device,
specified in the original command line, was coded as null (Z). The
directive is particularly useful for conditionally listing parts of a
large source file. The symbol table is always produced if the list-
file is active and therefore one way of getting just a symbol table
as the list output is to (conditionally) set the list directive off
at the beginning of the source:

FLST QRY Full listing required
;

cond not FLST
*L off

endc
;
<Symbol table produced anyway!>

*NUMBER

*Number  has  the  same  syntax  requirements  as  *List.  The  directive
enables the generation and printing of line numbers within the list
file to be switched on and off. The normal state is for line numbers
to be given.

*INCLUDE

*Include  requires  a  full  file  specification  as  its  argument.  The
specified file will be included in the source input stream at that
point  in  the  assembly.  This  feature  enables  a  suite  of  library
sources  to  be  kept  on  a  Microdrive  cartridge  and  included  in  a
program as and when required.

Only one level of inclusion is allowed and a file will fail to be
included if its *I directive is within an already included file. In
such cases an 'F! (File inclusion) error will ensue and assembly will
continue at the next line in the current source file.

If  a  file  cannot  be  opened  because,  for  example,  the  file
specification is incomplete or wrong, an error message will be given
and assembly will stop. Note that the file specification must be the
same  as  that  which  would  be  given  to  access  a  Microdrive  under
SuperBASIC. There are no restrictions on extensions, as is the case
within command line specifications.

It is normal practice with large source,documents to have one (short)
main module which *Includes all other external modules that are
required.

27



3.10 Alternative mnemonics

A set of alternative mnemonics exists within the assembler to aid the
programmer  both  in  terms  of  style  and  readability.  First  is  the
mnemonic for '‘exclusive-or' operations. There are two widely used
mnemonics for this instruction and both are supported:

Standard Alternative
EOR XOR

Second, there is the common confusion, especially with processors
that  cater  for  signed  and  unsigned  arithmetic,  as  to  the  true
interpretation  of  the  'carry-clear'  and  'carry-set'  conditional
statements. As such the assembler provides the following:

Standard Alternative
BCC, BCS BES, BLO
DBCC, DBCS DBHS, DBLO
SCC,SCS SHS, SLO

The mnemonic part '‘HS' Stands for ‘higher or same', and 'LO' stands
for ‘lower’, They differ from the 'greater or equal' (GE) and ‘less
than' (LT) mnemonics in that they refer to conditions set after an
unsigned operation.

3.11 Error messages

The assembler performs many checks while running and a number of
errors and list-file error codes will occur if the source is illegal
in some way. The error codes and messages which exist are as follows:

N> Number format error. A hexadecimal number is illegal.

L> Label format error. The format of a normal or local label is
   incorrect.

S> Syntax error. A catch-all message for lines which contain some
   form of illegal syntax.

M> Multiple definition. An attempt is being made to redefine a label
   or symbol during pass l.

I> Illegal expression. The arithmetic or logical expression is   
   illegal within the context given.

U> Undeclared identifier. During pass 2 a symbol or label is being
   referenced which was not defined during pass l.

O> Overflow/Branch out of range error, A 16-bit value is being
   assigned to an 8-bit location, or a relative branch is out of

28



   range.

C> Conditional assembly error. An ELSE or ENDC operator was found
   before a corresponding COND.

F> File inclusion error. More than one level of file inclusion is
   being attempted.

R> Range error. An out-of-limits range is being specified within a
   particular instruction.

GENERAL ERROR MESSAGES

A few other errors may occur, usually fatal in effect. If a file
cannot  be  opened  or  a  Microdrive  cartridge  error  occurs,  an
appropriate  message  is  displayed  and  assembly  will  cease.  If  bad
conditional assembly exists in pass 1, an error message is displayed
and pass 2 is not entered. In all these fatal cases the error message
will indicate the nature of the fault.

3.12 Word boundary alignment (ALIGN)

The 68000 processor will always require a word or long-word of data
to begin on a word boundary (i.e., an even memory address). This
implies that any instruction opcode must also be on a word boundary.
When  the  assembler  DEFB  or  DEFS  pseudo-operators  are  used,  the
location counter could point to an odd address at the end of the
definition line. If a 68000 instruction, DEFW line, or DEFL line
immediately follows the definition, the resultant object code will
not execute as expected. The 68000 will enter an error type exception
process when an attempt is made to access any instruction or word of
data at an odd address.

To stop you from having to count byte definitions, in order to make
sure  there  are  an  even  number  of  bytes  defined  (and  getting  it
wrong!)  the  assembler  pseudo-operator  ALIGN  is  provided.  This
operator should follow any byte definition line that must, because of
what follows, leave the location counter at an even address. For
example:

:
datl: defb 6,'FREEIT'

align
dat2: defw first,last,max,min
:

If  the  location  counter  is  incremented  internally,  to  produce
alignment,  the  byte  skipped  over  will  be  set  to  zero  by  the
assembler.

29



3.13 Aborting the assembler

If at any stage during an assembly operation you decide that you do
not  want  to  proceed  to  the  end,  you  can  abort  the  assembler  by
pressing the ESC key. The assembler will stop at the end of the
current source instruction parse, clear up any channels which were
open, and display the message:

Assembler aborted

The assembler should not be aborted by resetting the QL.

30



Appendices



Appendix A — 68000 INSTRUCTION
SET SUMMARY

A.1 Addressing modes

Six basic addressing modes in the 68000 give rise to 14 actual modes.
The  modes  of  addressing  are  shown  in  Fig.A.1,  together  with  the
appropriate assembler syntax.

MODE SYNTAX

 Implied

   Register   SR, CCR, USP, PC

  Immediate

    Immediate   #n

    Quick immediate   #b

  Absolute

    Short   a16

    Long   a32

  Register Direct

    Data register   Dn

    Address register direct   An

  Register Indirect

    Address register   (An)

    Postincrement   (An)+

    Predecrement   -(An)

    Address register with offset   d16(An)

    Register with index and offset   d8(An,i)

Program Counter Relative

Address register with offset   d16(PC)

Register with index and offset   d8(PC,i)

Notes:
  b = 3, 4, or 8 bits i  = An or Dn
  n = 8,16, or 32 bits An = address register
 d8 = 8 bit offset Dn = data register
d16 = 16 bit offset PC = current location
d16 = 16 bit address SR = status register
a32 = 32 bit address CCR = condition codes

 USP = user stack ptr

Figure A.1 68000 addressing modes

A.1



A.2. Condition codes

There are three instructions (Bcc, DBcc, and Scc) which use a set of
conditional tests. The tests are given ‘one/two character’ mnemonics
and the full instruction mnemonic consists of the above names with
'cc' replaced by the test mnemonic (e.g., BHI, BF, DBEQ, SNE, and so
on).

Each test produces a true or false result depending on the state of
given condition flags in the 68000 CCR register.

In  the  table  below,  the  alternative  mnemonics  are  given  in
parenthesis after the standard mnemonic.

  Mnemonic   Test   Interpretation

  T   1   true (always)

  F   0   false (always)

  HI   not(C).not(Z)   higher (unsigned)

  LS   C+Z   less than or same (unsigned)

  CC (HS)   not(C)   carry clear (unsigned)

  CS (LO)   C   carry set (unsigned)

  NE   not(Z)   not equal

  EQ   Z   equal

  VC   not(V)   overflow clear

  VS   V   overflow set

  PL   not(N)   plus

  MI   N   minus

  GE   not(N xor V)   greater than or equal (signed)

  LT   N xor V   less than (signed)

  GT   not(Z+(N xor V))   greater than

  LE   Z+(N xor V)   less than or equal
 
A.3 68000 instruction set summary

In Fig.A.2 (below) the instruction set of the 68000 MPU is given in
alphabetic order. The effect of each instruction on the CCR flags is
supplied,  together  with  an  indication  of  whether  or  not  the
instruction is privileged (i.e., can only be executed while the 68000
is  in  supervisor  mode),  and  whether  or  not  a  data  qualifier
(i.e., .B, .W, .L, or .S) is normally used. Within the condition code
list, the following key is used:

x : flag is affected
u : flag is undefined
- : flag is unaffected
0 : flag is reset to zero
1 : flag is set to one

A.2



The privileged instruction column (P) uses the following key:

n : not a privileged instruction
y : privileged instruction
? : privileged under certain conditions

If a '?' does appear in the 'P' column, reference should be made to
an appropriate text book in order to determine which special cases
can occur.

The data qualifier column (Q) uses the following key:

n : no qualifier used
y : qualifier used (or .W or ‘branch long’ assumed)
? : variable parameters depending upon use or non-use
    of data qualifiers

If a '?' does appear in the 'Q' column, reference should be made to
an appropriate text book in order to determine which cases can occur.

A.3 



 X N Z V C P Q

 ABCD  Add decimal with extend  x u x u x n n

 ADD  Add  x x x x x n y

  (When destination is 'An')  - - - - - n y

 ADDQ  Add quick  x x x x x n y

 ADDX  Add with extend  x x x x x n y

 AND  Logical AND  - x x 0 0 ? y

 ASL  Arithmetic shift left  x x x x x n ?

 ASR  Arithmetic shift right  x x x x x n ?

 Bcc  Branch conditionally  - - - - - n y

 BCHG  Bit test and change  - - x - - n n

 BCLR  Bit test and clear  - - x - - n n

 BRA  Branch always  - - - - - n y

 BSET  Bit test and set  - - x - - n n

 BSR  Branch to subroutine  - - - - - n y

 BTST  Bit test  - - x - - n n

 CHK  Check regs against bounds  - x u u u n n

 CLR  Clear operand  - 0 1 0 0 n y

 CMP  Compare  - x x x x n y

 CMPM  Compare memory  - x x x x n y

 Dbcc  Dec. and branch cond.  - - - - - n n

 DBRA  Decrement and branch always  - - - - - n n

 DIVS  Signed divide  - x x x 0 n n

 DIVU  Unsigned divide age  - x x x 0 n n

 EOR  Exclusive OR  - x x 0 0 ? y

 EXG  Exchange registers  - - - - - n n

 EXT  Sign extend  - x x 0 0 n y

 JMP  Jump  - - - - - n n

 JSR  Jump to subroutine  - - - - - n n

 LEA  Load effective address  - - - - - n n

 LINK  Link stack  - - - - - n n

 LSL  Logical shift left  x x x 0 x n ?

 LSR  Logical shift right  x x x 0 x n ?

 MOVE  Move  - x x 0 0 n y

  (When dest. is 'An')  - - - - - n ?

  (When dest. is 'CCR')  x x x x x  n n

  (When src. is 'SR')  - - - - - n n

  (When dest. is 'SR')  x x x x x y n

  (When 'USP' used)  - - - - - y n

A.4



 X N Z V C P Q

 MOVEM  Move multiple registers  - - - - - n y
 MOVEP  Move peripheral data  - - - - - n y
 MOVEQ  Move quick  - x x 0 0 n n
 MULS  Signed multiply  - x x 0 0 n n
 MULU  Unsigned multiply  - x x 0 0 n n
 NBCD  Negate decimal with extend  x u x u x n n
 NEG  Negate  x x x x x n y
 NEGX  Negate with extend  x x x x x n y
 NOP  No operation  - - - - - n n
 NOT  One's complement  - x x 0 0 n y
 OR  Logical OR  - x x 0 0 ? y
 PEA  Push effective address  - - - - - n n
 RESET  Reset external devices  - - - - - y n
 ROL  Rotate left  - x x 0 x n ?
 ROR  Rotate right  - x x 0 x n ?
 ROXL  Rotate left through extend  x x x 0 x n ?
 ROXR  Rotate right through extend  x x x 0 x n ?
 RTE  Return from exception  x x x x x y n
 RTR  Return and restore  x x x x x n n
 RTS  Return from subroutine  - - - - - n n
 SBCD  Subtract decimal with extend)  x u x u x n n
 Scc  Set conditional  - - - - - n n
 STOP  Stop  x x x x x y n
 SUB  Subtract  x x x x x n y

 (When destination is 'An')  - - - - - n y
 SUBQ  Subtract quick  x x x x x n y
 SUBX  Subtract with extend  x x x x x n y
 SWAP  Swap data register halves  - x x 0 0 n n
 TAS  Test and set bit 7  - x x 0 0 n n
 TRAP  Trap  - - - - - n n
 TRAPV  Trap on overflow  - - - - - n n
 TST  Test  - x x 0 0 n y
 UNLK  Unlink  - - - - - n n
 

Figure A.2 68000 instruction set summary

A.5



Appendix B — EDITOR/ASSEMBLER
QUICK REFERENCE
GUIDE

The editor and assembler packages are discussed in Chapters 2 and 3.

Given here are quick reference guides for their use.

EDITOR REFERENCE GUIDE

 
a) Top-level commands:

^E - Execute extended command:
   - D - Delete block (marker to cursor inclusive)
   - F - Find text string
   - I - Include external file (at cursor)
   - M - Move to line absolute
^F - Finish - return to SuperBASIC
^H - Give help on cursor control and deletion commands
^L - Load a file in from Microdrive
^M - Set current cursor line as marker line
^S - Save editor buffer on to Microdrive

b) Cursor control commands:

KEY NORMAL SHIFT ALTMODE

up line page start of text

down line page end of text

left character word start of line

right character word end of line

c) Text deletion commands:

KEY CTRL

up/down delete current line

left delete char/gap left

right delete cursor char/gap

 

B.1



ASSEMBLER REFERENCE GUIDE

a) Comments:

Must be preceded by a semi-colon (;)

b) Labels:

Must be followed by a colon (:)

c) Directives:

  i) *EJECT   - Force a new page
 ii) *HEADING   - Create new heading and new page
iii) *LIST <on/off>   - Switch listing file on/off
 iv) *NUMBER <on/off> - Switch line numbers on/off
  v) *INCLUDE <file>  - Include external source file

d) Pseudo-operators:

    i) EQU (=)   - Static equate
 ii) QRY   - Dynamic equate
iii) ORG   - Set program counter
 iv) ALIGN   - Align to word boundary
  v) COND <expr>   - Conditional assembly
     ELSE
     ENDC

e) Expression operators:

+ add SHR shift right

- subtract SHL shift left

* multiply OR logical '‘or'

/ divide AND logical ‘and'

NOT one's complement

B.2


